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Problem 1

We consider the compact version of the U(1) gauge theory on a cubic lattice in D = 4 Euclidean spacetime
dimensions with lattice spacing a. The group elements are

Ul = exp(iθl) θl ∈ (−π, π]

on each link l of the lattice. We can index our links by the site from which they start and the direction in
which they go:

θl = θµ(n) n ∈ Z4

We use Ul when we go along a link in a positive direction and U†l when we go along a link in a negative
direction. Now we consider a plaquette, which is the boundary of an elementary square on the lattice. We
define Up =

∏
Ul of the links on the plaquette, where we pick up two Ul and two U†l , where we will have to

index our links carefully. The lattice action is

βS[U ] = β
∑
p

(1− Re(Up))

where we sum over all the plaquettes on the lattice, and our partition function is

Z(β) =

ˆ π

−π

∏
l

dθle
−βS[U ]

As we argued in the lecture, as β → ∞, the only contributions we get to the partition function are from
those U with S[U ]→ 0 and the fields become smooth on the scale of the lattice spacing (we shall state what
this means below).

We redefine our phases by a gauge field that takes as an argument a vector of Euclidean spacetime
coordinates:

θµ(n) = aAµ(x = an+ aµ̂/2)

where µ̂ is the unit vector in the µ direction. This Aµ, like the phase θµ, is a scalar defined at a particular
point between sites on the lattice, but as we take the lattice spacing to zero these Aµ quantities will coalesce
into a Euclidean four-vector defined at a spacetime point x = an. We are ready to write the plaquette
operator in the µ, ν plane with its “lower left” corner, as it were, at an (see the sketch below).
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Up = exp
(
iaAµ(an+ aµ̂/2) + iaAν(an+ aµ̂+ aν̂/2)− iaAµ(an+ aν̂ + aµ̂/2)− iaAν(an+ aν̂/2)︸ ︷︷ ︸

(∗)

)
(1)

As β →∞, we have Re(Up)→ 1 and so the argument of the exponential goes to zero. We can Taylor expand
the argument of the exponential:

(∗) = ia
(
Aν(an+ aµ̂+ aν̂/2)−Aν(an+ aν̂/2)

)
− ia

(
Aµ(an+ aν̂ + aµ̂/2)−Aµ(an+ aµ̂/2)

)
= ia

(
a∂µAν(an+ aν̂/2) +

a2

2
∂2
µAν(an+ aν̂/2)

)

− ia

(
a∂νAµ(an+ aµ̂/2) +

a2

2
∂2
νAµ(an+ aµ̂/2)

)
+ 3rd derivative terms

On the scale of the lattice spacing (i.e. a finite) the derivatives of Aµ have to go to zero; this is what we
mean when the fields become smooth on the scale of the lattice spacing. On the other hand, if we take the
lattice spacing to zero, we are allowed to have nonzero derivatives of Aµ and the terms that go to zero the
slowest with lattice spacing are the first derivatives. As a→ 0 we get

(∗) = ia2
(
∂µAν(an+ aν̂/2)− ∂νAµ(an+ aµ̂/2)

)
(2)

We are ready to find the lattice action in the limit β →∞, a→ 0. In the limit x→ 0, eix = 1 + ix− x2/2 +
O(x3), so each term in the lattice action becomes to lowest order in a

β

2
a4
(
∂µAν(an+ aν̂/2)− ∂νAµ(an+ aµ̂/2)

)2
(3)

Now we need to come up with a sensible way of summing over all plaquettes in terms of sites and axes. This
is achieved by summing over sites and by summing over plaquettes spanned by all pairs of axes extending in
the positive direction from each site. For a three-dimensional analog of this situation, see the sketch below.

We can sum over all
(

4
2

)
unique pairs of axes at each site or we can double-count and sum over all ordered

airs of axes. This latter situation is easier to handle. So our total lattice action as β →∞, a→ 0 is

S[U ] = β
∑
p

(1− Re(Up)) =
β

4

∑
n,µ ν

a4
(
∂µAν(an+ aν̂/2)− ∂νAµ(an+ aµ̂/2)

)2
(4)

Note that when we double-count our plaquettes in this fashion, we go around each plaquette once the
“proper” way and once the “wrong” way (see sketch below).

2



When we go backwards around the plaquette we pick up the hermitian conjugate of Up in (1), which
amounts to a minus sign in (2). But this means we have two extra minus signs in (3) so we actually get the
same contribution to the action from each traversal of the plaquette, so formula (4) is correct and needs no
further modification to account for the orientation of our plaquettes. We need to change now the differential
in the partition function’s integral:

dθl = adAµ(x = an+ aµ̂/2) =⇒
∏
l

dθl =
∏
µ,x

adAµ(x)

We can now write down our partition function:

Z(β) =

ˆ ∏
µ,x

adAµ(an+ aµ̂/2) exp

−β
4

∑
n,µ ν

a4
(
∂µAν(an+ aν̂/2)− ∂νAµ(an+ aµ̂/2)

)2
We can neglect the a from the product in the measure because it amounts to a normalization that drops out
when we compute correlation functions. In the limit a→ 0 we get an+ aµ̂/2→ an = x and

∑
n a

4 becomes´
d4x. Define a coupling g by β = 4/g2 and Fµν = ∂µAν(x)− ∂νAµ(x). Then our partition function is

Z(g) =

ˆ ∏
µ,x

dAµ(x) exp

− 1

g2

ˆ
d4x

∑
µ ν

FµνFµν


Finally, we take advantage of the Euclidean metric and Einstein summation to write

Z(g) =

ˆ ∏
µ,x

dAµ(x) exp

(
− 1

g2

ˆ
d4xFµνF

µν

)

Problem 2

When we discussed the SU(3) gauge theory in the strong-coupling limit, we found the lightest glueball mass
amg with the correlator

lim
nt→∞

〈Ũ†ij(n̄, nt)Ũij(n̄, 0)〉 →|c|2 e−amgnt

where Ũp ≡ Up − 〈Up〉. We also discussed that, because of how integrals of Ukp for various powers k work

with the Haar measure, we find that when we expand the exponential eβS[U ] in its Taylor series, we get the
lowest-order contribution at order β4nt . This corresponds to tiling the minimal tube that has at its ends
U†ij(n̄, nt) and Uij(n̄, 0).

Momentum-dependent operators are Fourier transforms of position-dependent operators:

Uij(p̄, nt) =
∑
n̄

exp(ip̄ · n̄)Uij(n̄, nt)

and we neglect vacuum contributions for p̄ 6= 0. In the long-time limit we have the correlator of momentum-
dependent operators

lim
nt→∞

〈Ũ†ij(p̄, nt)Ũij(p̄, 0)〉 →|c|2 e−aEg(p̄)nt

We want to find this dispersion relation aEg(p̄) to lowest order in p̄ for this lightest glueball. By the
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definitions of the operators and of expectation values, we have1

〈Ũ†ij(p̄, nt)Ũij(p̄, 0)〉 =
∑
n̄,k̄

〈eip̄·(n̄−k̄)Ũ†ij(k̄, nt)Ũij(n̄, 0)〉

=
∑
n̄,k̄

eip̄·(n̄−k̄)〈U†ij(k̄, nt)Uij(n̄, 0)〉

=
∑
n̄,k̄

eip̄·(n̄−k̄) 1

Z

ˆ ∏
`

dU` U
†
ij(k̄, nt)Uij(n̄, 0)e−βS[U`]

=
∑
n̄,k̄

eip̄·(n̄−k̄) 1

Z

∑
j

(−β)j

j!

ˆ ∏
`

dU` U
†
ij(k̄, nt)Uij(n̄, 0)× S[U`]

j

Clearly, the further apart k̄ is from n̄, the higher the order to which we get a nonzero contribution from
each integral. The first of these terms is of order β4nt and comes when k̄ = n̄. This term is of the form
N(b0β)4nt , where b0 is a finite number coming from a single integral and N is the number of sites on our
lattice. If p̄ = 0 then this is all we need, for

N(b0β)4nt ∝ e−aEg(0)nt =⇒ aEg(0) = 4 log

(
1

b0β

)
= amg

as one would expect. If p̄ 6= 0, then at this order in β we have no momentum dependence so we must press
on. What terms correspond to the next lowest order in β? The ones for which k̄ is displaced one unit from
n̄ in any of the spacelike directions on the lattice. Consider the sketch below:

This minimal tube involves 4nt+4 plaquettes coming from the exponential of the action, but it is not unique;
when we have d spacelike dimensions, then there are 2d × (nt − 1): 2d from n̄ ± µ̂ for each spacelike basis
unit vector µ̂ and nt − 1 choices of where to put the ‘step’ along the nt axis. We assume the lattice has
periodic boundary conditions so the path integral has no dependence on n̂. If we also assume that the extent
of the lattice is the same in each spatial direction, then by discrete rotational symmetry we should expect
the integral not to depend on the direction in which k̄ is displaced from n̄. Then our next-order term is of
the form

N
∑
µ̂

eip̄·µ̂(Cβ)4nt+4 = N(b1β)4nt+4
∑
µ̂

cos(pµ)

where C comes from evaluating the path integral and b1 both b1 and the factor of two we get from converting
the complex exponentials to cosines. We write both terms together and find

〈Ũ†ij(p̄, nt)Ũij(p̄, 0)〉 ∝ (b0β)4nt

1 +
b4nt+4
1

b4nt
0

β4
∑
µ̂

cos(pµ)

 ∝ e−aEg(p̄)nt

Unfortunately, we have no way to tell how b1 scales compared to b0 and β, but let’s assume that b4nt+4
1 β4/b4nt

0 �
1. Then in the limit of large nt we get

aEg(p̄)nt = 4nt log

(
1

bβ

)
− b4nt+4

1

b4nt
0

β4
∑
µ̂

cos(pµ)

1In the second line we dispense with the Ũp notation since in general p̄ 6= 0.
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aEg(p̄) = amg −
b4nt+4
1

b4nt
0

β4

nt

∑
µ̂

cos(pµ)

If a particle’s momentum is very small2, we get

aEg(p̄) = amg −
b4nt+4
1

b4nt
0

β4

nt
(1− p2)

This second term is just the β4nt+4-order term in the dispersion relation for p̄ = 0, a correction to the mass,
giving us a renormalized mass gap m∗g and letting us rewrite

Eg(p̄) = m∗g + Cp̄2 (5)

What we have written as m∗g is obviously not the full mass from evaluating the path integral to all orders; it
is only the glueball mass to second lowest order in contributions from the path integral. To get this result we
have taken strong coupling (β � 1) and small momentum (large lattice). The next contribution to the path
integral is of order β4nt+8 and our complex exponentials are always order 1. Then in (5) we have neglected
terms of order p4β4nt+4 and order β4nt+8. In this respect we are fine. On the other hand, we don’t know
how large the values of the path integrals are. We know that path integrals often diverge in the continuum
limit but in finding correlators we divide by Z, so we probably don’t get anything divergent after all. But
it’s an awkward loose end.

Problem 3

We consider the Metropolis algorithm to update link matrices. We have a gauge field {Ul} and update
a link matrix Ul by selecting a trial U ′l with probability P̃ (Ul → U ′l ), constructed to be ergodic with

P̃ (Ul → U ′l ) = P̃ (U ′l → Ul), and accepting the trial link matrix with probability

P ′(Ul → U ′l ) = min
[
exp

(
−β(S[U ′l ]− S[Ul])

)
, 1
]

We’d like to find the combined probability to update Ul to U ′l , P (Ul → U ′l ) in the cases Ul 6= U ′l and Ul = U ′l .
If the trial link matrix is different from the current link matrix, then the combined probability is the product
of the probabilities of first selecting U ′l as the trial link matrix and the probability of then accepting U ′l as
the updated link matrix:

P (Ul → U ′l 6= Ul) = P̃ (Ul → U ′l )P
′(Ul → U ′l )

The situation is different when we don’t update the link matrix3 because there are two mechanisms for this
is to occur. We could select the current matrix Ul as our trial link matrix, or we could select and then reject
a different link matrix. There is a probability to accept and then reject any other link matrix U ′′l 6= Ul, so
we have

P (Ul → Ul) = P̃ (Ul → Ul) +
∑
U ′′l

P̃ (Ul → U ′′l )
(
1− P ′(Ul → U ′′l )

)
Note we are not over counting any cases, since if U ′′l = Ul we have probability zero to reject it and we have
no contribution from the second term in the above equation.

We want to have an equilibrium probability density P eq(Ul) = exp(−βS[Ul]). This probability distribu-
tion is a fixed point of the Metropolis algorithm if we have detailed balance, so we need to show that our
algorithm indeed satisfies detailed balance:

P eq(Ul)P (Ul → U ′l ) = P eq(U ′l )(U
′
l → Ul)

2pµ � 1∀ spacelike µ̂. We are only allowed small enough momenta for the Taylor expansion to work when we are on a very
large lattice.

3Or accept the link matrix, but it is the same as the old one.
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There are three cases we have to check. The first is when Ul = U ′l , but if this is the case we get detailed
balance trivially.

The other two cases involve Ul 6= U ′l . Consider first S[Ul] = S[U ′l ]. Then P ′(Ul → U ′l ) = 1 and we have

P eq(Ul)P (Ul → U ′l ) = P eq(Ul)P̃ (Ul → U ′l ) = P eq(U ′l )P̃ (U ′l → Ul) = P eq(U ′l )P (U ′l → Ul)

where the second equality follows from the symmetric construction of P̃ . If instead we have S[U ′l ] > S[Ul],
then we have

P eq(Ul)P (Ul → U ′l ) = exp(−βS[Ul])P̃ (Ul → U ′l ) exp(−β(S[U ′l ]− S[Ul]))

= exp(−βS[U ′l ])P̃ (U ′l → Ul)

= P eq(Ul)P (U ′l → Ul)

where the final equality comes from the fact that, for S[U ′l ] > S[Ul], we have P ′(U ′l → Ul) = 1.
We have shown that this construction of the Metropolis algorithm satisfies detailed balance and so we

get the desired equilibrium distribution as a fixed point of the algorithm.

Problem 4

For a U(1) gauge theory on a D = 2 + 1 lattice, we want to calculate the following quantities:

• the plaquette average 〈Re(Up)〉;

• the lightest JPC = 0−− glueball mass;

• the lightest JPC = 0++ glueball mass;

• the confining string tension a2σ.

Apart from the plaquette average, which is just an average, these quantities (generically aE) are given
by the exponent in the limit

lim
nt→∞

〈Φ(t)†Φ(0)〉 ∝ e−aEnt

This quantity is time-translation invariant, so we can put zero wherever we like. Also, on a periodic
lattice such as the ones we use in this problem, there is nothing special about the time coordinate nt = 0.
So instead of calculating 〈Φ(t)†Φ(0)〉, we calculate〈

1

Lt

Lt−1∑
T=0

Φ(t+ T )†Φ(T )

〉

where Lt is the length of the lattice in the time direction.
I calculated the plaquette average and the correlators for β = 2.0, 2.2, 2.3 on periodic lattices lattices with

dimensions 18× 18× 24, 22× 22× 36, 28× 28× 40. Discussion of my results will follow, but first I describe
my code4, which was written in C++. I used the Metropolis algorithm to simulate the lattice theory. In this
problem, we treat the U(1) gauge theory with its representation as complex exponentials. Our link matrices,
as in problem 1, are of the form eiθ but in the code we store only the phases, and instead of multiplying link
matrices when computing plaquettes, we add (and subtract, for Hermitian conjugates) the phases of those
exponentials. I use the words ‘link’, ‘link matrix’ and ‘phase’ interchangeably in what follows.

4To see my code and a description virtually identical to this one, but with additional discussion of issues with my code and
ways to make it more coherent and faster, see http://github.com/jngraham/latticeU1_3
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Overview

My code is a cobbled-together concoction of functional and object-oriented approaches. My code is built
from six key files:

• globals.h, which contains all the parameters we use to build our lattice, create the set V , update the
lattice and so on;

• simulate.cpp, in which simulate() prepares the lattice and our set V and calls our other functions
to generate field configurations, calculate our data points and write the data to file;

• update.cpp, in which update() takes as arguments the lattice and V , both by reference. This is
the function that iterates over the lattice and updates each link in the lattice using the Metropolis
algorithm;

• operators.cpp, which contains several functions that are called from simulate.cpp that take as
arguments t and T and return values of Φ†(t+T )Φ(T ) for the various operators, while the expectations
themselves are calculated inside simulate();

• write.cpp, in which write() takes as arguments pointers to all our data arrays and writes those data
to CSV files, which I analyze using MATLAB;

and most importantly:

• Site.cpp, which defines the Site class and its members. Each Site object has a member double for
the phase of each link going away from the site in a positive direction, and a member Site* pointer to
each neighboring Site. There are six such pointers, since our lattice is 2+1-dimensional and there is a
neighbor in each direction on each axis. The class has only the default constructor, in which the links
phases are set to zero and the pointers are set to null. The null pointers are overwritten immediately
when we set up the lattice, and the zero phases are modified when we relax the lattice to equilibrium.

There is also main.cpp, which is left over from a previous version of the code in which β was not a global
variable and instead we looped over an array of values of β, calling simulate() with each value as an
argument.

All the arrays in my code are explicitly 1-dimensional, but except for samples’ plaquette averages,
all the arrays are implicitly multidimensional. Our lattice of pointers to Site objects has (global) di-
mensions Lx, Ly and Lt, so a Site with coordinates (x, y, t) on the ‘actual’ lattice is accessed at index
x + Lx*y + Lx*Ly*t. Similarly, our data arrays (except for the plaquette averages) have (global) dimen-
sions N_samples and Lt, since we must store 〈Φ†(t+ T )Φ(T )〉 for each time interval for each sample, and so
the data point for time interval t in sample i is at index Lt*i + t.

I don’t things in a wholly (or even mostly) object-oriented way but I keep track of the plaquettes by
assigning to each site the plaquettes that have their early, lower left-hand corner on that site. So, looking
at the sketch below, one site ‘has’ the plaquettes outlined with solid lines and the neighbor site ‘has’ the
plaquettes in dashed lines:
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Algorithm

The algorithm starts in simulate(). The first thing that simulate() does is initialize and set to zero arrays
of doubles to hold our data, and doubles to hold Φ(0) for all our operators, which we will need to refer to
many times throughout the simulation for each configuration. Then it initializes and sets to zero an array of
doubles V, which will become our set V . Finally, we create an array lattice of pointers to Site objects and
allocate memory for each one, and loop through all x, y and t coordinates to give each Site pointers to its
neighbors. I use modular arithmetic to enforce the periodic boundary conditions; if a Site has coordinate
x, then the next and previous Site objects on the x axis are (x+1)%Lx and (x+Lx-1)%Lx, respectively.

The next step is to sample our set V from a normal distribution. We have a global parameter N_V for
the number of elements of the set; I chose 400. We also have global parameters for the mean and standard
deviation of the normal distribution from which we sample elements of V . I chose 0 (naturally) and 0.75
for these quantities, buying me an acceptance rate of around 50% , as suggested in the problem sheet. It
is important that P̃ (U` → U ′`) = P̃ (U ′` → U`) to ensure ergodicity per problem 3. This is achieved by
also including the additive inverse of every sample in V , so we only sample N_V/2 times from the normal
distribution when we populate V . Once we have our set V we are free to relax our lattice to equilibrium.

Now the actual calculation begins. Our simulate() function loops first over the number of samples
(which is a global variable) and, in each of those loops, over the number of configurations we take per
sample. It is within this second loop that all the action5 happens. Here we call update() to generate a
new field configuration and calculate our relevant data. To calculate the correlators, we have a loop over
T ∈ [0, Lt − 1], where we calculate Φ(T ) since we will need it Lt times and to calculate it every time is a
waste. Within this loop, we loop over t ∈ [0, Lt − 1] and call our various operators with t and T , as well as
the lattice, as arguments. Using these operators we calculate Φ(t + T )†Φ(T ) for each pair of t and T , and
add each value (scaled by N_configs_per_sample and Lt) to the growing sum in the appropriate entry of
the appropriate array of data.

Once the loops are done, the bulk of the calculation is over. We delete the pointers to our Site objects
from lattice and call write() to write our data arrays to CSV files. With the exception of our plaquette
average array, which only has one data point for each sample, these files are constructed to have a different
time, ranging from 0 to Lt-1, in each column, and the corresponding value of the appropriate observable
from the appropriate sample in each row.

Lattice Update Details

The function update() takes β by value as an argument and lattice and V as arguments by reference, so
that we can update all the links on all the sites using the Metropolis algorithm. I have a for loop over all the
indices i on the lattice6 but I access data using the Site**, the pointer to lattice, given as an argument,
and increment that pointer each time through the loop. This is fairly half-baked, using a combination of
features of arrays and linked lists at the same time, but it lets us dereference the pointers in lattice more
easily and clearly. Within each loop we attempt to update the phases on the x, y and t links. I attempt to
update each phase only once, rather than several times as suggested in the lecture. To illustrate, I describe
the procedure to update the x link using the Metropolis algorithm; there are only minor differences (namely
which pointers we dereference) when we update the y and t links.

First we store the phase of the current x link using old_link = (*ptr)->xlink and obtain a trial new
link by adding to old_link a random phase chosen uniformly from V .

Since our lattice lives in 2+1 dimensions, each link belongs to four plaquettes, so to update each link
we must calculate four ‘staples’, which we use to calculate the action. Each Site object has pointers to its
neighbors, which themselves have pointers to their neighbors, so we dereference as many pointers as necessary
to calculate the staples. For example, each link that points in the x direction belongs to two plaquettes that
lie in the xy plane. The (correctly oriented) staples associated with these plaquettes are calculated by

5Pardon the pun.
6We needn’t worry about the coordinates any more since each Site has pointers to its neighbors.
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staple1 = (*ptr)->xnext->ylink - (*ptr)->ynext->xlink - (*ptr)->ylink;

staple2 = - (*ptr)->xnext->yprev->ylink - (*ptr)->yprev->xlink + (*ptr)->yprev->ylink;

where ptr, to emphasize, is a pointer to lattice[i] and is incremented with every loop. Once we have the
staples, we have the plaquettes and so can calculate the action of the field configuration. Strictly, our path
integral has integrand

e−βS[U ], S[U ] =
∑
p

(
1− Re TrUp

)
(6)

but the Metropolis algorithm only needs the quantity

C =
exp(−βS[U ′])

exp(−βS[U ])

where U is the current field configuration and U ′ is the trial field configuration. When we take this ratio, the
1 terms in the action all cancel out, the minus signs cancel out, and the real parts of the traces of plaquettes
cancel out when they are unchanged between U and U ′. So when we update the phase θ` on link ` only have
to calculate

C = exp

β∑
j

cos(θ′` + ξj)− β
∑
j

cos(θ` + ξj)


where ξj the phase of staple j around link `. These quantities, the sums of cosines, are what we calculate.
We use the properties of exponentiation to only take one exponential for each link we want to update, since
exponentiation is much more expensive than subtraction.

We uniformly select a z from [0, 1) and compare it to C. If z < C, then we accept the new link. If z ≥ C,
then we keep the old link. This takes care of both cases of the transition probability at the same time. If
the new action is smaller than the old action, then per (6) the new sum of cosines is larger. Then C > 1
and we always accept the new link. If, on the other hand, the new action is larger, then 0 < C < 1 and we
accept the new phase with probability C.

Operator Details

The average plaquette is calculated by iterating over all the Site objects in the lattice, and finding cosUp
for each of the plaquettes that ‘belongs’ to the site. There are three such plaquettes for every site. This
average plaquette is passed by value as an argument to the function that calculates the operator from which
we get m0++ .

I calculate the correlators for m0++ and m0−− in very similar ways. For a given nt, I find the indices
of all the sites with that time coordinate and then find the phase of the plaquette in the xy slice through
the lattice that ‘belongs’ to each site. The m0++ mass comes from the real part of the plaquette so for each
configuration we have the operator

Φ(nt) =
∑
nx,ny

[
Re(Up(nx, ny, nt))− 〈Re(Up(nx, ny, nt))〉

]
=
∑
nx,ny

[
cos(Up(nx, ny, nt))− 〈cos(Up(nx, ny, nt))〉

]
where the final quantity is what we actually calculate, which makes clear why we pass 〈cos(Up)〉 as an
argument in the code7. Because we have only discrete rotational symmetry on the lattice, in the above
calculation I take for 〈cosUp〉 the average over only the plaquettes that lie in the xy plane. When we extract
from the lattice the data we use to calculate m0−− , we have a much simpler operator

Φ(nt) =
∑
nx,ny

Im(Up(nx, ny, nt)) =
∑
nx,ny

sin(Up(nx, ny, nt))

7Properly we have Re(Up) or cos(θp) but as I said before I treat phases and matrix elements as interchangeable.
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The flux tube operator is

Φ(nt) =
∑
ny

∏
nx

Up(nx, ny, nt) =
∑
ny

exp
(∑
nx

iθp

)
where we save as doubles the real and imaginary parts of Φ(nt) and use trigonometric identities to calculate
Φ†(nt)Φ(0) for every nt for each configuration. We implement this operator by starting from a site with
a particular nx = 0, ny, nt adding the phase of its x-pointing link to a total Θ and going to the site’s x
neighbor; then it’s just a matter of adding phases and going to the end of the lattice in the x direction,
finding the real and imaginary parts of Θ and summing those quantities over all ny coordinates. Once we
have saved the real and imaginary parts of the Wilson loop correlator to file, it is simple to calculate the
norm of the correlator.

Minor Details

Possibly the most important subtlety in this procedure is how we sample V and so generate trial configu-
rations. I have already discussed that for every v ∈ V , we also have −v ∈ V to get us ergodicity and buy
the Boltzmann factors as a steady state distribution. But just as important are the characteristics of the
distribution from which we sample V . I sample V from a normal distribution with µ = 0 and σ = 0.75 and
I give the algorithm only one chance per configuration to update each link. This buys me an acceptance
rate of around 50% (anecdotally between 45% and 55% each time I updated the configuration). If I had
let the algorithm attempt to update each link several times, I would have had to sample V from a much
wider distribution (anecdotally, with 5 attempts per link, I was able to get an acceptance rate of ∼ 90% for
σ = 0.75). On the other hand, had I used this multiple-update approach, I might have had for each sample
a better ensemble of field configurations. However, the sheer number (10,000) of field configurations per
sample may make this point moot. I am not quite sure how to satisfy oneself that an implementation of the
Metropolis algorithm has produced a ‘good’ ensemble of microstates.

Because the elements of U(1) are periodic mod 2π, what matters is v ∈ V mod 2π. The wider we make
the distribution from which we sample V , the more it effectively approaches a uniform distribution. This is
not a problem per se, but if we permit qualitatively large changes in our configuration relatively often by
having such a wide distribution, it is possible we may end up with high-energy configurations that don’t
relax to equilibrium. This is why I chose σ = 0.75.

Again anecdotally, one of my classmates had a simulation that was logically perfect, but he found
〈cosUp〉 ≈ 0.79 on a small lattice for β = 2.2, when we should have found (and my simulation found)
〈cosUp〉 ≈ 0.829. After some discussion about what could possibly be wrong, it emerged that he allowed his
code to attempt to update each link several times, and sampled V from a wide normal distribution. The fact
that his average plaquette was too small means the average action of his configurations was too large, and
so the large increments each time he updated a link phase meant his lattice could not relax to equilibrium.

Another subtle point is the choice of random number generator. When I developed my code, I used the
C++ default_random_engine, which gives the same sequence of pseudorandom numbers every time. This
was not ideal because I initialized a default_random_engine in simulate(), where I used it to populate V ,
and in update(), where I initialized8 a new RNG every time I called update, giving the same numbers every
time. The problem sheet says that even though the RNG on our personal machines is not great, I thought
what I had went too far. So I changed to the MT19937 random generator, seeded by clock(). Because I
didn’t parallelize my simulation, this seed was different every time I simulated the lattice. I got new results
every time and I avoided anything sketchy that might have happened due to my lack of understanding of
C++.

8I think – I am not entirely clear on how C++ works.
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Figure 1: Average plaquette for different lattice sizes and coupling constants.

Results

In this section I discuss the results I found for the observables we were meant to calculate and occasionally
digress to discussion of my MATLAB code that prepared figures and calculated fits and the choices I made
when writing that program. I report my results in two-sided 99% confidence intervals. I consulted the
National Institute of Standards and Technology’s table9 for critical t values. In this experiment we have 24
degrees of freedom so, for a two-sided confidence interval, we use t0.995(24) = 2.797. The MAT and XLSX
files containing my data can be found in my GitHub repository10. If you would like to mess with my data
and my MATLAB programs, feel free to download the repository and see what happens.

To my surprise, the correlator for the lightest mass m0++ decayed to negative quantities. MATLAB has
no functionality to fit data to a curve of the form C + AeBt, and naively fitting exponentials to data with
positive and negative values gave some decaying fits, some growing fits, some negative and some positive
curves. This was no good. Once I had picked an interval on which my data looked to be decaying, but were
not overtaken by noise, I shifted the data by the minimum of the correlator on that interval so that I fit to
data that were positive and decayed to zero; then I shifted the curves back so that I effected something like
a C +AeBt fit. This way I picked out the exponential decay and nothing else.

Average Plaquette 〈cosUp〉

As hinted, the plaquette average appears to a fairly ultraviolet quantity of this lattice gauge theory. On a
small 10× 10× 10 lattice I found an average around 0.829 for β = 2.2. Figure 1 displays box plots of of the
average plaquette data, where the lengths of the whiskers indicate the bounds of 99% confidence intervals.
The averages are tabulated in Table 1. In Figure 1 the boxes are rather squished, but I thought it was best
to display the data in context with several values of β. The only real difference we get from calculating this
quantity on a larger lattice with the same number of field configurations is that we have more plaquettes
with which to calculate the average, buying us marginally smaller 99% confidence intervals.

Lattice Size β = 2.0 β = 2.2 β = 2.3
18× 18× 24 0.8060(1) 0.8295(1) 0.8387(1)
22× 22× 36 0.80593(3) 0.82954(5) 0.83876(6)
28× 28× 40 0.80598(4) 0.82947(6) 0.83871(6)

Table 1: Average plaquette tabulated by lattice size and coupling constant

9http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
10http://github.com/jngraham/latticeU1_3
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Figure 2: Average plaquette on a 10× 10× 10 lattice for several values of β.

Out of curiosity, I did a simulation for a wide range of β on a small lattice with a small number of
configurations per sample. Box plots from this simulation are shown in Figure 2. It appears there may be
a second-order phase transition near around β ∼ 1.9, but it is unclear. The average plaquette is of course
bounded from above by 1, so the curvature of the plot of 〈cosUp〉 vs. β must change somewhere, but whether
there is a discontinuity in d〈cosUp〉/dβ, we don’t know.

Lightest Glueball Mass m0−−

The quantity am0−− is obtained from the exponent of the exponential fit to the correlator of the operator

Φ(p̄ = 0, nt) =
∑
n̄

Im(Up(n̄, nt))

The averages of my data over all samples, including error bars indicating 99% confidence intervals, are
plotted in Figure 4 in Appendix A. To capture the exponential decay but none of the noise, I chose to fit
exponential curves to my data on the interval [1, 10] for the 18× 18× 24 lattice, and on the interval [1, 14]
for the larger lattices. My experiment’s data here are largely positive but I shifted the data according to
the minimum on the appropriate interval11 before finding my exponential fits12. In these data we see an
interesting feature: that as nt approaches the end of the lattice, the correlation function grows. This was
initially a surprise to me, but it really should not have been. Because we have constructed the lattice with
periodic boundary conditions, the time interval between nt = 0 and, say, nt = 39 on the largest lattice is
1, not 39. This feature, in addition to the worries of noise dominating the data, is a good reason not to fit
exponential curves to the entire time interval for which we sampled the correlator. This also inspired me
first to consider computing 1

2 〈Φ
†(t)Φ(0) + 1

2Φ†(−t)Φ(0) before I decided to work with〈
1

Lt

Lt−1∑
T=0

Φ(t+ T )†Φ(T )

〉

11[1, 10] or [1, 14].
12For this to work, one has to fit on an interval in which the correlator does decay to an equilibrium value; if instead we fit

to only part of the decay, not only would the fit possibly be less accurate given the smaller number of points MATLAB has
to work with, but the shifted data would seem to decay to a negative value and we cause ourselves the same problem we are
trying to solve.
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Lattice Size β = 2.0 β = 2.2 β = 2.3
18× 18× 24 0.454± 0.038 0.360± 0.037 0.379± 0.058
22× 22× 36 0.428± 0.048 0.325± 0.043 0.277± 0.040
28× 28× 40 0.422± 0.037 0.291± 0.034 0.277± 0.032

Table 2: Lowest glueball mass am0−− tabulated by lattice size and coupling constant with bounds of 99% confidence
intervals.

Lattice Size β = 2.0 β = 2.2 β = 2.3
18× 18× 24 1.736± 0.201 1.858± 0.204 2.083± 0.611
22× 22× 36 1.812± .142 2.036± 0.286 2.067± 0.352
28× 28× 40 1.782± 0.133 2.329± 0.760 2.020± 0.292

Table 3: Lowest glueball mass am0++ tabulated by lattice size and coupling constant, including bounds on 99% confi-
dence intervals.

My results are displayed in Table 2. It is easy to pick out by eye the exponential decays in Figure 4 so
I am reasonably confident in my results. What qualitative statements can we make about this glueball? If
the average plaquette is explicitly ‘fairly ultraviolet’, then one might expect this glueball mass and other
energies in the problem to be more infrared and so depend on the size of the lattice. It is clear that the
glueball gets lighter when we change β from 2 to 2.2, but it is not clear if this is true when we increase β to
2.3. At first glance the glueball gets lighter as the lattice size increases but the confidence intervals overlap
except when we change the lattice size from 18× 18× 24 to 22× 22× 36 for β = 2.3. We can speculate that
am0−− = 0.28 is the limit of the glueball mass as the lattice becomes infinite for β = 2.3.

Is there a phase transition? Perhaps. Creutz (1981, p.136) writes about finding a phase transition in
the plaquette average by looking at how many configurations it takes for an initial average to relax to an
equilibrium average. We could use a similar procedure to look for a transition in m0−− as we change β. Near
a phase transition one would expect the correlator to have difficulty ‘deciding’ how quickly to decay with t.
We may be able to observe such effects by plotting 〈Φ†(t+ T )Φ(T )〉 as we iterate the Metropolis algorithm
from an initial condition, and seeing how many configurations it takes for the correlator to relax.

Lightest Glueball Mass m0++

The quantity am0++ is obtained from the exponent of the exponential fit to the correlator of the operator

Φ(p̄ = 0, nt) =
∑
n̄

[
Re(Up(n̄, nt))− 〈Re(Up(n̄, nt))〉

]
where the average plaquette is invariant under time and space translations because to compute it involved

summing the plaquettes in all orientations in all time and space locations.
To my surprise, the correlator decays to a negative value. Appendix B has figures that show both the

average of this correlator at each time over 25 samples with error bars indicating a 99% confidence interval,
and scatter plots of all the data along with the 25 exponential fits. As I mentioned at the top of this section,
each time I fit an exponential curve to a sample, I shifted the data so the minimum value of the sample on
the time interval in which I calculated the data was set to zero. Looking at Figure 6, I felt it best to fit to
my data for nt ∈ [1, 5]. This has the disadvantage of introducing a certain amount uncertainty in the results
of the MATLAB fitting toolbox, but I was not sure how to deal with these confidence intervals since my aim
was to find am0++ for each sample and to average these quantities at the end.

My results are displayed in Table 3. There is nothing clearly going on here; we are hindered in our
analysis by the wide confidence intervals. Does the glueball get lighter or heavier as β increases? Unclear.
Is this glueball heavier on a larger lattice? Possibly; the average values of m0++ increase for β = 2.2 not
not for the other values of coupling. However, the confidence intervals are rather large so we cannot say
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anything with conviction. One feature of these data is that the glueball seems to have the same mass on all
three lattices for β = 2.3. Whether this means that all our lattices are effectively infinite for this coupling
is unclear. Our plots in Appendix B show that the correlator for this glueball decays very quickly so this
constant value may be an artifact of our low time resolution on the lattice, but we note that our exponential
fits do give different masses for the other coupling strengths. All we can say with confidence is that the
m0++ particle is heavier than the m0−− particle.

Again, from looking at Figure 6, this glueball appears to be fairly heavy, and the correlator seems to go
to noise after nt = 4 or nt = 5, so I chose to fit to my data on [1, 5]. I get a much lighter glueball, albeit one
still heavier than m0−− , by fitting exponential curves to my data on, say, [1, 10]. This of course raises the
question of whether I am picking and choosing my data to get the results I want to see. To an extent this
glueball has to be heavier from m0−− and to an extent I am picking and choosing my data to get the result
I want.

Confining String Tension a2σ

We obtain a flux tube energy from the exponential fit to the correlator of the operator

Φ(p̄ = 0, nt) =
∑
ny

Lx∏
nx=1

Ux(nx, ny, nt)

In the long time limit, the correlator gives us

〈Φ†(nt)Φ(0)〉 → e−aEf (l)nt (7)

where the flux tube energy is given by the Nambu-Goto formula

lim
l→∞

Ef (l) = σl − π

6l
+O

(
1

l3

)
On a lattice, the length of the string is given by an integer multiple of the lattice spacing. Our flux-tube
operator winds around the lattice in the x direction, so we end up with l = aLx for three different values of
Lx. In the end, we will only end up with one value of the confining string tension a2σ for each value of β.
When we convert to lattice units, we end up with

aEf (Lx) = a2σLx −
π

6Lx
(8)

and the coefficient in front of the first term is precisely what we want to calculate.
Before we get into calculations, we make some qualitative statements about the flux tube energy by

staring at the absolute value of the Wilson loop operator in Figure 8. The operator decays with time and
rate of decay seems to increase with Lx. These observations are consistent with a positive flux tube energy
that is to leading order a positive power law of l. It also appears that the flux tube energy decreases as
coupling decreases (as β increases). Fitting to this correlation function was the most most involved part of
the data analysis because the flux tube energy has two dependencies here, both of which need to be captured
by our fits. I chose to fit on nt ∈ [1, 6] for β = 2.0 and, for the other couplings, I fit on [1, 10] for the
small lattice and [1, 8] for the larger lattices. Figure 9 in Appendix C shows all the fits to all my samples.
The exponents from these fits, along with the standard error for 99% confidence intervals, are indicated in
Table 4.

Lattice Size β = 2.0 β = 2.2 β = 2.3
18× 18× 24 1.292± 0.070 0.755± 0.031 0.612± 0.044
22× 22× 36 1.757± 0.142 1.042± 0.048 0.848± 0.040
28× 28× 40 2.584± 0.801 1.594± 0.140 1.292± 0.088

Table 4: Flux tube energy for the Wilson loop correlator tabulated by lattice size and coupling constant, including
bounds on 99% confidence intervals.
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To fit lines of the form y = mx to these data13, I constructed the following equation in Mathematica for
each value of β, filling in the energies from Table 4:

χ2(a2σ) =
∑

Lx∈{18,22,28}

(aE + π/6Lx− a2σLx)2

a2σLx
(9)

I consulted the table of critical χ2 values provided by Penn State14. The critical χ2 value is 6.635 for a
99% confidence level, so we can solve equation (9) three ways: find the a2σ that minimizes the χ2 statistic
and solve for the upper and lower bounds on a2σ that result in χ2 = χ2

0.01. This procedure gets us a sense
of the uncertainty we have for the confining string tensions. These values, including the minimum χ2, are
tabulated in Table 5.

β Optimum a2σ a2σ Lower Bound a2σ Upper Bound Minimum χ2

2.0 0.0842 0.0302 0.235 0.0532
2.2 0.0513 0.0142 0.185 0.0461
2.3 0.0417 0.0102 0.170 0.0358

Table 5: String tension for each β and the χ2 statistic for fitting each data series to E + π/6Lx = a2σLx and
minimizing χ2. The critical value is χ2

0.01 = 6.635 for confidence level 0.99 with one degree of freedom, obtained by
setting a2σ to the upper and lower bounds.

As we suspected by looking at the figures in Appendix C, the string tension decreases as coupling
g ∝ β−1/2 decreases. With MATLAB, I took the averages from Table 4 and added to each datum π/6Lx
per the Nambu-Goto formula. I then made scatter plots of these modified data and plotted as solid lines the
fits I found by minimizing χ2 per equation (9).
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Figure 3: Scatter plot of data from which we calculate the string tension a2σ. Each point is an average flux tube
energy, to which we have added π/6Lx and also plotted both linear fits.

Though one can make better linear fits to the data, indicated by dashed lines in Figure 3, these new fits
have nontrivially nonzero y-intercepts and so contradict the Nambu-Goto formula.

Conclusions

The quantity I was able to measure with the most precision was the average plaquette. This is because in
these lattices, there are from 104 to 105 plaquettes. We add them all up and divide by the total; nothing

13That is, lines with y-intercept zero.
14http://sites.stat.psu.edu/~mga/401/tables/Chi-square-table.pdf
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subtle goes on.
Calculating all the other quantities involved fitting exponential curves to a subset of the data, and were

less precise. For each configuration, the correlator for each interval t is an average over tens of quantities
instead of tens of thousands like we had for the plaquette average. Fitting curves and obtaining exponents
was fairly straightforward with the correlator for m0−− and for several instances of the Wilson loop correlator,
since the energies involved were relatively small and we are able to see the exponential decay before it is
washed out by noise. This was much harder and less reliable for the higher-energy quantities, since we had
to fit curves to our data on much smaller time intervals, and noise takes over very quickly anyway. This
proved particularly hard for the Wilson loop correlator on the largest of the three lattices.

As I have hinted in places, we suffered from having only a coarse resolution in time. If we were able to
have slices in the lattice of non-integer time coordinate, we could perhaps more easily see the correlators for
m0++ and the higher-energy Wilson loops decaying. But how would this work? We would have two sites
per unit time, so instead of a 18× 18× 24 lattice going from nt = 0 to nt = 23, the time coordinate would
only go to 11. But then we would have to reconsider how we update each link. We could certainly still have
plaquettes of length 1 in every dimension; this would involve going along two links in the t direction when
calculating our plaquette operators. But we’d have to modify the Metropolis algorithm in some fashion to
reflect the fact that going from one site to its neighbor in the t direction only really picks up half of a link
matrix. We would of course have links in the x and y directions from these half-integer time sites, so we’d
have to be careful about how many of what phase we pick up when we go around a plaquette. As far as
I can tell in Creutz’s discussion of the Metropolis algorithm and quantities that can be extracted from an
ensemble of lattice field configurations, there is no material on non-integer coordinates. This was beyond
anyone’s concern in the 1980s; computers were less powerful than they are today and the largest lattice in
the literature at the time had 164 sites, only twice as many as we deal with in this problem (Creutz 1983,
p.128).

Mike’s email on 12th April suggests there are other and better ways to calculate m0++ and a2σ so I
suppose I shall just have to wait and see.
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A m0−− Figures
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(b) 22× 22× 36 lattice
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(c) 28× 28× 40 lattice

Figure 4: Average of correlator for m0−− over samples for various lattice sizes; error bars indicate 99% confidence
intervals.
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(c) 28× 28× 40 lattice

Figure 5: Correlator data points including exponential fits, from which we find the data given in Table 2
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B m0++ Figures
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(c) 28× 28× 40 lattice

Figure 6: Average of correlator for m0++ over samples for various lattice sizes; error bars indicate 99% confidence
intervals for the correlator.
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Figure 7: Correlator data points including exponential fits, from which we find the data given in Table 3.
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t
0 10 20 30

jh)
y (

t)
)
(0

)i
k

0

0.2

0.4

0.6

0.8

1
- =2.0

t
0 10 20 30

jh)
y (

t)
)
(0

)i
k

0

0.5

1

1.5

2

2.5
- =2.2

t
0 10 20 30

jh)
y (

t)
)
(0

)i
k

0

0.5

1

1.5

2

2.5

3
- =2.3

(b) 22× 22× 36 lattice
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Figure 8: Average of absolute value of Wilson Loop correlator over samples for various lattice sizes; error bars indicate
99% confidence intervals for the correlator.
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(a) 18× 18× 24 lattice
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(c) 28× 28× 40 lattice

Figure 9: Correlator data points including exponential fits, from which we find the data given in Table 4.
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